MODULE
AV

*Design with classes —
Objects and Classes Methods
Instance variables
Constructor

Accessor and Mutator
*Data-Modelling Examples
Structuring classes with inheritance and polymorphism.
*Abstract classes
*Interfaces
*Exceptions

Handle a single exception Handling multiple

exceptions

Programming languages that allow the programmer to define new
classes of objects are called object-oriented languages.

OBJECTS AND CLASSES

*The interface or set of methods that can be used with a class of objects
*The attributes of an object that describe its state from the user’s point of view
*How to instantiate a class to obtainan object

A class definition is like a blueprint for each of the objects of that
class.
contain
S
e e Definitions of all of the methods

ee Descriptions of the data structures used to maintain the
state of an object.

An object packages a set of data values, its state, and a set of
regamtions, its methods in a single entity that can be referenced with a

=Class name=(<parent class name:):
<mathod definition-1-

:mEthud definition-m

The class definition syntax has two parts:

1. Class header
2. A set of method definitions that follow the class header.

The class header consists of the class name and the parent class
name.

The class name is a Python identifier.

The parent class name refers to another class.
All Python classes are organized in a tree-like class hierarchy.

At the top, or root, of this tree is the most abstract class, named
object.

Each class immediately below another class in the hierarchy is

referred to as a subclass, whereas the class immediately above it,
if there is one, is called its parent class.

If the parenthesized parent class name is omitted from the

class definition, the new class is automatically made a subclass of
object

“'Em:tru:tnr' creates a Etudnnt with the give
nama and number of scores and sets all scoras

m u....
salf.name = name

self.scores = []

for count in range{number) :
self.scores.append(0)

getName (self):
"""Raturns the student's name."™™

return salf.nama

setScore(self, 1, score):
“""Resets the ith score, counting from 1.7""
sal f.scores

get gatScore(self, 1):
"""Returns the ith score, counting from 1.™"
raturn self.scores[i - 1]

=»>» PO Student import Student

dof l]ﬂtﬂ\’ﬂl"iﬂﬂ{iﬂ'lﬂ: =»» 5 = Student("Maria™, 5)
"""Raturns the average score,™™" ;;;E':"';::E:}
raturn sum(salf.scoras) / len{self.scoras) Scores: 000 00
»»» 5.5e8thcore(l, 100)
dof gatHighScora(sel): > prinees)
"""Returns the highest score.™™" Scores: 100 0 0 0 0
raturn max(salf,scoras) ZEE s .getHighScore()
.gathd (§]
def __str_ (salf): E} P geTvETags
"""Returns the string representation of the >>> 5.getscore(l)
Fem lm
St“mntr-l . ; . »>> §.getNama()
raturn “Name: " + self.name + "\nScores: " +\ "Maria’

n n

Join(map(str, self.scores))

Docstrings
help(Student)

Method Definitions
Method definition mustinclude a first parameter named self.

The interpreter binds the parameter self to that object.

s.getScore(4)

binds the parameter self in the method getScore to the Student

object referenced by the variable S.

A method automatically returns the value None when it includes no
return statement

THE INIT__METHOD AND INSTANCE
VARIABLES

__init__must begin and end with two consecutive underscores.

This method is also called the class’s constructor, it will run
automatically when a user instantiates the class.

The purpose of the constructoris to initialize an individual object’s
attributes.

The attributes of an object are represented as instance variables.

These variables serve as storage for its state.

The scope of an instance variable is the entire class definition. The

object

The str Method

Builds and returns a string representation of an object’s state.

When the str function is called with an object, that object’s
str __method is automatically invoked to obtain the string that
strreturns

Accessors and Mutators

Methods that allow a user to observe but not change the state of
an object are called accessors.

Methods that allow a user to modify an object’s state are called
mutators

AN OBJECT COMES INTO BEING WHEN ITS
CLASS IS INSTANTIATED.

Python virtual machine will eventually recycle its storage during a
process called garbage collection.

DATA-MODELLING EXAMPLES

Rational Numbers

A rational number consists of two integer parts, a numerator and a
denominator.

Format numerator / denominator.

Python has no built-in type for rational numbers.

==> ohalalf = Rational(l, 2)

»»>» oneSixth = Rational(l, &)
=»> print(oneHalf)

1/2

=»» print(onaHalf + oneSixth)
2/3

=»> ONeHalf == onaSixth

False

=== OfaHalf = oneSixth
Trua

RATIONAL NUMBERARITHMETIC
AND OPERATOR OVERLOADING

Python allows to overload many of the built-in operators for use
with new data types.

Operator Method Name
+ __add__
- _ sub
_ mul__
! _div__
% _ mod

The object on which the method is called corresponds to the left operand.
The method’s second parameter corresponds to the right operand.

The code x + y is actually shorthand for the code x.__add__ (y).

ITrr

File: rational.py
Resources to manipulate rational numbers.
LA A
class Rational (object):
"nn"Represents a rational number."""
def init (self, numer, denom)
"nnConstructor creates a number with the given
numerator and denominator and reduces it to lowest
terms . LA A
self.numer = numer
self.denom = denom
self. reduce ()
def numerator (self) :
m"nrReturns the numerator."""
return self.numer
def denominator (self) :
"nrReturns the denominator."""
return self.denom
def str (self):
"nm"Returns the string representation of the
nm&jer . IT I mn
return str(self.numer) + "/" + str(self.denom)
def _;educe(self]:
"n"i"Helper to reduce the number to lowest terms."""
divisor = self. gcd(self.numer, self.denom)
self.numer = self.numer // divisor
self.denom = self.denom // divisor

_gecd(self, a, b):
"mmEuclid's algorithm for greatest common
divisor (hacker's wversion)."""
(a, b) = (max(a, b), min(a, b))

b > 0:
(a, b) = (b, a % b)
a

__add (self, other):
n"nrReturns the sum of the numbers.
self is the left operand and other is
the right operand."""
newNumer = self.numer * other.denom + \
other.numer * self.denom
newDenom = self.denom * other.denom
print (Rational (newNumer, newDenom))

__sub _(self, other):
newNumer=self.numer * other.denom - \
other.numer * self.denom
newDenom=self.denom * other.denom

Rational (newNumer, newDenom)
print (Rational (newNumer , newDenom))

x=Rational (5, 4)
y=Rational (6, 4)
c=X-y

print(c)

C=X+Y

print(c)

TO OVERLOAD AN ARITHMETIC OPERATOR,
DEFINE A NEW METHOD USING THE
APPROPRIATE METHOD NAME.

Type of Operation Rule

Addition mfdh + nafd; = Imdz + nach) /S chdz
Subtraction m/Sth - nafda = (mdz — nadi) £ dhd:
Multiplic ation nSdy = npSds =, S dd;

ot a — xr o

"""Returns the sum of the numbers.

salf is the left operand and other 1is
the right operand.™"™"

mawNumar = self.numer * other.denom +

other.numar * self.danom
nawlenom = self.demnom * other.denom

Rational (newNumer, newDenom)

The code x + y is actually shorthand for the code x._ _add__ (y).

Operator Meaning Method

= Equals _eq__
1= Mot equals __he__
< Less than e
<= Less than or equal _la__
= GGreater than _gt__
»= Greater than or equal _ge_

Table 9-5 The companson operators and methods

det __1t__(self, other):
"""Compares two rational numbers, self and other,
using <.""™
extremes = self.numer * other.denom
means = other.mumer * salf.denom
return extremes < means

det __eq (self, other):
"""Tests self and other for equality.
if self 1s other: # Object identity?
return True
alif typae(self) != type(other): # Types match?
return False

alsa:
return sal f.numer == other.numer and %

sal f.denom == othear .danom

Structuring classes with inheritance and
polymorphism

1. Data encapsulation. Restricting the manipulation of an object’s
state by external users to a set of method calls.

2.Inheritance. Allowing a class to automatically reuse and extend
the code of similar but more general classes.

3.Polymorphism. Allowing several different classes to use the
same general method names

In Python, all classes automatically extend the built-in object
class, which is the most general class.

Inheritance Hierarchies

Obijects in the natural world can be classified using inheritance hierarchies

Physical object

Living thing Inanimate object

Mammal Insect Stone Asteroid

Cat Ant

Figure 9-5 A simplfied hierarchy of obyects in the natural world

AT THE TOP OF A HIERARCHY IS THE MOST
ﬁ%l\cllgé'%léfgle'éa’r‘éas(ucr)elzs QaBtJaEreC-croSrﬁ mon to every object in the

hierarchy.
For example, every physical object has a mass.

Classes just below this one have these features as well as additional
ones.

Thus, a living thing has a mass and can also grow and die.

The path from a given class back up to the topmost one goes
through all of that given class’s ancestors.

Each class below the topmost one inherits attributes and behaviours
from its ancestors and extends these with additional attributes and
behaviour.

There are five types of inheritances:
Single Inheritance
*Multiple Inheritance
*Multilevel Inheritance
*Hierarchical Inheritance

*Hybrid Inheritance

Single Inheritance

This type of inheritance enables a subclass or derived class to
inherit properties and characteristics of the parent class, this
avoids duplication of code and improves code reusability.

#parent class
Above:
i=25
! funl (self):
print ("Hey there, you are in the parent class")

#subclass
Below (Above) :
i=10
fun2 (self) :
print ("Hey there, you are in the sub class")

|| templ=Below ()
{| temp2=Above ()
templ.funl ()
1| templ.fun2 ()
temp2 . funl ()
print (templ.i)
print (temp2.i)
#temp2.fun2 ()

Multiple Inheritance

This inheritance enables a child class to inherit from more than one
parent class.

This type of inheritance is not supported by java classes, but python
does support this kind of inheritance.

It has a massive advantage that, gathering multiple characteristics
from different classes.

#$parent class 1
class A:
demol=0
def funl (self):
print ("Printing C's wvalue in A'S Function",self.demol)

#parent class 2
class B:
demo2=0
i def fun2 (self):
print ("Printing C's wvalue in B'S Functicn”,self.demnEh

|

#child class
lciass C(A, B):
def fun3(self):

i print ("Hey there, you are in the child class")
I# Main code
fe=c0
|c.demol = 10
|c.demo2 = 5
c.funl ()
lc.funE{]
| e.fun3 ()
print ("first number is : ",c.demol)

print ("second number is : " ,c.demol)
| |

MULTILEVEL INHERITANCE
IN MULTILEVEL INHERITANCE, THE

TRANSFER OF THE PROPERTIES OF
CHARACTERISTICS IS DONE TO IVIORE THAN

ONE C #parent class 1 .A—A_AR
vehicle:
TO GRI‘ functioning(self) : D
print ("vehicles are used for transportation")
LEAF IR

#child class 1
car (vehicle) :
wheels (self) :
print("a car has 4 wheels")

#child class 2
electric car(car):
speciality (self):
print ("electric car runs on electricity”h

electric=electric car()
electric.speciality()
electric.wheels ()
electric.functioning()

Hierarchical Inheritance
This inheritance allows a class to host as a parent class for more
than one child class or subclass.

This provides a benefit of sharing the functioning of methods with
multiple child classes, hence avoiding code duplication.

#parent class

class Parent:
def paren;_:un(self]:
print ("Hey there,

#child class 1
class childl (Parent) :
def funl (self):
print ("Hey there,

#child class 2
class child2 (Parent) :
def fun2(self):
print ("Hey there,

#child class 3

class child3 (Parent) :

def fun3(self):
print ("Hey there,

main program

|child objl = childl()
| child obj2 = child2 ()

child obj3 = child3()
|child objl.parent fun()
child objl.funl ()

child obj2.parent fun()

you

you

you

you

dare

are

are

are

in

in

in

in

the

the

the

the

parent class'")

child class 1")

child class 2")

child class 3")

HYBRID INHERITANCE

An inheritance is said hybrid inheritance if more than one type
of inheritance is implemented in the same code.

This feature enables the user to utilize the feature of
inheritance at its best.

This satisfies the requirement of implementing a code that
needs multiple inheritances in implementation.

class A:

def funl (self):

print ("Hey there, you
class B(A):

def fun2(self):

print ("Hey there, you
class C(A):

def fun3(self):

print ("Hey there, you
class D(C,B):

def fun4 (self):

print ("Hey there, you
ref = D()
ref.fun4 ()
ref.fun3 ()
ref.fun2 ()
ref.funl ()

dare

are

dare

are

in

in

in

in

class A")

class B")

class C")

the class D")

POLYMORPHIC
METHODS

A subclass adds something extra, such as a new method or a data
attribute, to the ensemble provided by its super class.

Two classes have the same interface, or set of methods available to
external users.

One or more methodsin a subclass override the definitions of the
same methods in the super class to provide specialized versions of the
abstract behaviour.

This methods are known as polymorphic methods.

The _str _methodis an example for a polymorphic method

THE WORD ‘POLY” MEANS MANY AND
MORPHS MEANS FOR

process of representing one §o‘rm in many forms” is called a
polymorphism.

Types of Polymorphism in Python:

The following are the examples, or implementations, of polymorphism:

1.Duck Typing Philosophy of Python
2.0verloading
Operator Overloading
Method Overloading
Constructor Overloading
3.0verriding
Method overriding
Constructor overriding

Duck Typing Philosophy of Python

Duck typing refers to the programming style, in which the object
passed to a method supports all the attributes expected from it,
at the runtime.

class Duck:
At self):
"Quack.. Quack"

class Dog:
def self):
"Bow. . .Bow"
class Cat:
def self):
"Moew. . .Moew

Quack.. Quack
Moew. . .Moew

Bow. . .Bow

OVERLOADING
IN PYTHON

1. Operator Overloading
2. Method Overloading

3. Constructor Overloading
Method overloading in Python:

If 2 methods have the same name but different
types of arguments, then those methods are
said to be overloaded methods.

class Demo:
def self):
'no-arg method’
def self, a):
‘one-arg method’
def self, a, b):

'two-arg method’

oliii]l two-arg method

Operator Overloading

- object__add__(self, other)
- object.__sub__(self, other)

_}

N I A A R R A T T P

object.__mul__(self, other)
object.__div__(self, other)
object.__floordiv__(self, other)
object.__mod__(self, other)
object.__pow__(self, other)
object.__iadd__(self, other)
object.__isub__(self, other)
object.__imul__(self, other)
object.__idiv__(self, other)
object.__ifloordiv__(self, other)
object.__imod__(self, other)
object.__ipow__(self, other)
object.__It_ (self, other)
object.__le_ (self, other)
object.__gt_ (self, other)
object.__ge_ (self, other)
object.__eq__ (self, other)
object.__ne_ (self, other)

CONSTRUCTOR
OVERLOADING IN
PYTHON

class Demo:
def self):
"No-Arg Constructor’
def self, a):
"One-Arg constructor'

def self, a, b):
"Two-Arg constructor'

METHOD
OVERRIDING IN | .
PYTHON° P;rcperties_status (self) :

print ('Money, Land, Gold')

to marry(self):

print ('Aravind')
C(P):

studg_statustselfj:

print ("Studies done waiting for Jjob")
tq_marry(self]:

print ('Megha')

c=C ()

c.properties status()
c.to marry ()

c.study status()

Money, Land, Gold

Megha

S5tudies done waiting for Jjob
s

If child class does not have constructor, then parent class constructor will be
executed at the time of child class object creation.

If child class has a constructor, then child class constructor will be executed at
the time of child class object creation.

From child class constructor parent class constructor can be invoked by using

super() method
class Person: Constructor Overridingin Python:

def self, name, age):
self.name=name
self.age=age
class Person):
def self, name, age, eno, esal):
name, age
.eno=eno
.esal=esal
self):
"Employee Name:', self.name
"Employee Age:', self.ape
"Employee Number:', self.eno
"Employee Salary:', self.esal

Name: Surabhi
Age: 16
Number: 872425
Salary: 26000
Name: Ranjith
Age: 20
Number: 872426
Salary: 36000

ee
ce
ce
ee
ee
ce
ec
ee

Loy
Loy
Loy
Loy
Loy
Loy
Loy
Loy

'Surabhi', 16, 872425,26000

'Ranjith’',20,872426,36000

ABSTRACT CLASSES
*An abstract class is a class that cannot be instantiated.

*Can create classes that inherit from an abstract class.

*An abstract method is a method without an implementation.
*An abstract class may or may not include abstract methods.

*To define an abstract class, use the abc (abstract base class)
module.

AbstractClassName(ABC):

from abc import *
class ABC) :
@abstractmethod
def self):
pass
@abstractmethod
def self):
pass
def self):
"Implemented method"

Program: Abstract methods

from abc import ABC, abstractmethod

class ABC) :
def self):
"Welcome to bank™
@abstractmethod
def self):
"Abstarct Method"
pass

class Bank):

def self):
"Implementation of abstract method"

Program: Abstract Class "In sbi bank 5 rupees interest”

Welcome to bank
In sbi bank 5 rupees interest

from abc import ABC, abstractmethod

class ABC):
def self):
"Welcome to
@abstractmethod
def self):
"Abstarct Method"
pass

class Bank

def self):
"Balance 1is

PROGRAM:ABSTRACT
CLASS

o]l]l TypeError: Can't instantiate abstract class SBI with abstract methods interest

from abc import ABC, abstractmethod

class ABC):
def self):

"Welcome to bank™

@abstractmethod

def self):
"Abstarct Method"
pass

Bank):

self):
"Balance 1s 160"

SBI):
self):

PROGRAM:
ABSTRACT
CLASS AND
SUBCLASS
OF
ABSTRACT
CLASS

"In sbi bank interest is 5 rupees”

Welcome to bank
Balance is 100
In sbi bank interest is 5 rupees

from abc import ABC, abstractmethod

class ABCH - Program: Abstractclass
def self) - can also contain concrete

"Welcome to bank" methods
@abstractmethod
def self):
"Abstarct Method"
pass
def self
"Providing offers”

Bank

self):
"In SBI bank 5 rupees interest”

Qutput:

Welcome to bank
In SBI bank 5 rupees interest

*Every abstract class in Python should be derived from
the ABC class which is present in the abc module.

eAbstract class can contain Constructors, Variables,
abstract methods, non-abstract methods, and Subclass.

*Abstract methods should be implemented in the
subclass or child class of the abstract class.

*If in subclass the implementation of the abstract
method is not provided, then that subclass,
automatically, will become an abstract class.

*Then, if any class is inheriting this subclass, then that
subclass should provide the implementation for abstract
methods.

*Object creation is not possible for abstract class.

*Can create objects for child classes of abstract classes to
access implemented methods.

INTERFACES

An interface is an abstract class which can contains only abstract
methods.

In python there is no separate keyword to create an interface.

Create interfaces by using abstract classes which have only
abstract methods.

Interface can contain:
*Constructors
*Variables
*Abstract methods
*Sub class

An interface acts as a template for designing classes.

Abstract methods are those methods without
implementation or which are without the bodly.

So the interface just defines the abstract method without
implementation.

The implementation of these abstract methods is defined
by classes that implement an interface.

Program: Interface having two abstract methods and one sub class

from abc import ABC, abstractmethod
class ABC):
@abstractmethod
def self):
pass
@abstractmethod
def self):
pass

Bank
self):
"Balance is 180 rupees”
self):
"SBI interest is 5 rupees”

Balance is 100 rupees
SBI interest is 5 rupees

EXCEPTIONS

Types of Error:
In any programming language there are 2 types of errors possible:

Syntax Errors

*Runtime Errors

Syntax Errors
The errors which occur because of invalid syntax are called syntax errors.

RUNTIME ERRORS

While executing the program if something goes wrong then we will get
Runtime Errors.

They might be caused due to,

1. End userinput
2. Programminglogic
3. Memory problems etc.

Such types of errors are called exceptions.
Runtime Error example

print(10/0)

What is an Exception

An unwanted or unexpected event which disturbs the normal flow
of the program is called exception.

Whenever an exception occurs, then immediately program will
terminate abnormally.

In order to get program executed normally, handle those exceptions
on high priority.

Exception Handling

Exception handling is the process, in which define a way, so that
the program doesn’t terminate abnormally due to the exceptions.

In python, for every exception type, a corresponding class is
available and every exception is an object to its corresponding class.

Whenever an exception occurs, Python Virtual Machine (PVM) will
create the corresponding exception object and will check for
handling code.

If handling code is not available, then Python interpreter terminates
the program abnormally and prints corresponding exception
information to the console.

The rest of the program won’t be executed.

Exception Hierarchy

Every Exception in Python is a class.

The BaseException class is the root class for all exception classes
in python exception hierarchy and all the exception classes are
child classes of BaseException.

How to Handle Exception in Python?

Using try except statements

TRY BLOCK:

try is a keyword in python.

The code which may or expected to raise an exception, should be
written inside the try block.

except block:
exceptis a keywordin python.

The corresponding handling code for the exception, if occurred,
needs to be written inside the except block.

if the code in the try block raises an exception, then only execution flow goes to
the except block for handling code.

If there is no exception raised by the code in the try block, then execution flow
won’t go to the except block.

I = —— — — o e R R e

print('One')
print (' Two')

try:
print (10/0)
except ZeroDivisionError:
print ("Exception passed")
| print (' Four')
print('Five')

Code without exception

print('One')
print (' Two')

try:
print (10/2)
print ("No Exception")
except ZeroDivisionError:
print ("Exception passed")
print ('Four')
print('Five')

Code with exception

One

Two

Exception passed
Four

Five

S S, I

o

One

Two

5.0

No Exception
Four

Five

>>> |

PRINTING EXCEPTION
EXCG"’“NP@W’I‘ATF@N f’]‘i\Fﬁ‘?dle’-l‘fﬁN”g)

referen e exception

================= RESTART: D:/PIOQTEIIIS/P]
Exception information: division by zero
>>> |

prlnt(lOJO)
ZeroDivisionError Z:
print ("Exception information:", z)

TRY WITH MULTIPLE EXCEPT BLOCKS IN
PYTHON:

try with multiple except blocks are allowed in python.

There may be the possibility that a piece of code can raise
different exceptionsin different cases.

. Forevery exception type a separate except block has to write:" ~*-
. Enter First Number: 4
x=int (input ("Enter First Number: ")) Fnter Second Number: 0
y=1int (input ("Enter Second Number: ")) Ccan't Divide with Zero
print (x/y) >>>
ZeroDivisionError: RESTART: D:/1
print("Can't Divide with Zero") Fnter First Number: 6
_ ValueError: o Enter Second Number: o 2
print ("please provide int value only") please provide int value only
b

ONE EXCEPT BLOCK — MULTIPLE
EXCEPTIONS

except (Exceptioni, Exception2, exceptiond,..):
or
except (Exceptioni, Exception2, exceptiond,..) as msg:

L Y
ol e

x=int (input ("Enter First Number: "))
y=int (input ("Enter Second Number: "))

print (x/y)
except (2ZeroDivisionError,ValueError) as e:
print ("Please Provide valid numbers only and problem is: ", e)

Enter First Number: 3

Enter Second Number: 0

Please Provide valid numbers only and problem is: division by zero
o

RESTART: D:/Programs/python/exceptionl.py
Enter First Number: 5

Enter Second Number: o

Please Provide valid numbers only and problem is: invalid literal for int() wit
h base 10: 'o!

o

DEFAULT EXCEPT BLOCK

* Default except block is used to handle any type of exceptions.

* It’s not required to mention any exception type for the default
block.

* If there is no idea of what expectation the code could
raise,then go for default exceptblock.

"Enter First Number:
"Enter Second Number:

e

x/y

except 7erocDivisionError:
“ZeroDivisionError: Can't divide with zero"

except:

"Default Except: Please provide valid input only™

finally Block
finally is a keyword in python.
Used to write a finally block to do clean-up activities.

try: try:

try block™ try block™

18/6

except:

“except block” except ZeroDivisionError:
"except block”
finally:

“"finally block”

finally:

“finally block”

Output:

Output:
try block

finally block

try block
except block

finally block

